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Abstract

In this paper we review different meanings of the word intrinsic in statistical estimation, focusing our
attention on the use of this word in the analysis of the properties of an estimator. We review the intrinsic
versions of the bias and the mean square error and results analogous to the Cramér-Rao inequality
and Rao-Blackwell theorem. Different results related to the Bernoulli and normal distributions are also
considered.
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1 Introduction

Statistical estimation is concerned with specifying, in a certain framework, a plausi-
ble probabilistic mechanism which explains observed data.The inherent nature of this
problem is inductive, although the process of estimation itself is derived through mathe-
matical deductive reasoning.

In parametric statistical estimation the probability is assumed to belong to a class
indexed by some parameter. Thus the inductive inferences are usually in the form of
point or region estimates of the probabilistic mechanism which has generated some
specific data. As these estimates are provided through the estimation of the parameter, a
label of the probability, different estimators may lead to different methods of induction.
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Under this approach an estimator should not depend on the specified parametrization
of the model: this property is known as thefunctional invarianceof an estimator. At
this point, the notion of intrinsic estimation is raised forthe first time: an estimator
is intrinsic if it satisfies this functional invariance property, and in this way is a real
probability measure estimator. On the other hand, the bias and the mean square error
(MSE) are the most commonly accepted measures of the performance of an estimator.
Nevertheless these concepts are clearly dependent on the model parametrization and
thus unbiasedness and uniformly minimum variance estimation arenon-intrinsic.

It is also convenient to examine the goodness of an estimatorthroughintrinsic con-
ceptual tools: this is the object of theintrinsic analysis of statistical estimationintro-
duced by Oller & Corcuera (1995) (see also Oller (1993b) and Oller (1993a)). These
papers consider an intrinsic measure for the bias and the square error taking into ac-
count that a parametric statistical model with suitable regularity conditions has a natural
Riemannian structure given by the information metric. In this setting, the square error
loss is replaced by the square of the corresponding Riemannian distance, known as the
information distanceor theRao distance, and the bias is redefined through a convenient
vector field based on the geometrical properties of the model. It must be pointed out that
there exist other possible intrinsic losses but the square of the Rao distance is the most
natural intrinsic version of the square error.

In a recent paper of Bernardo & Juárez (2003), the author introduces the concept
of intrinsic estimation by considering the estimator whichminimizes the Bayesian risk,
taking as a loss function a symmetrized version of Kullback-Leibler divergence (Bernardo
& Rueda (2002)) and considering a reference prior based on aninformation-theoretic
approach (Bernardo (1979) and Berger & Bernardo (1992)) which is independent of
the model parametrization and in some cases coincides with the Jeffreys uniform prior
distribution. In the latter case the prior, usually improper, is proportional to the Rieman-
nian volume corresponding to the information metric (Jeffreys (1946)). This estimator
is intrinsic as it does not depend on the parametrization of the model.

Moreover, observe that both the loss function and the reference prior are derived just
from the model and this gives rise to another notion of intrinsic: an estimation procedure
is said to beintrinsic if it is formalized only in terms of the model. Observe that inthe
framework of information geometry, a concept isintrinsic as far as it has a well-defined
geometrical meaning.

In the present paper we review the basic results of the above-mentioned intrinsic
analysis of the statistical estimation. We also examine, for some concrete examples, the
intrinsic estimator obtained by minimizing the Bayesian risk using as an intrinsic loss
the square of the Rao distance and as a reference prior the Jeffrey’s uniform prior. In
each case the corresponding estimator is compared with the one obtained by Bernardo
& Juárez (2003).
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2 The intrinsic analysis

As we pointed out before, the bias and mean square error are not intrinsic concepts. The
aim of theintrinsic analysisof thestatistical estimation, is to provide intrinsic tools for
the analysis of intrinsic estimators, developing in this way a theory analogous to the
classical one, based on some natural geometrical structures of the statistical models. In
particular, intrinsic versions of the Cramér–Rao lower bound and the Rao–Blackwell
theorem have been established.

We first introduce some notation. Let (χ,a, µ) be a measure space andΘ be a con-
nected open set ofRn. Consider a mapf : χ × Θ −→ R such thatf (x, θ) ≥ 0 and
f (x, θ)µ(dx) defines a probability measure on (χ,a) to be denoted asPθ. In the present
paper aparametric statistical modelis defined as the triple{(χ,a, µ) ; Θ ; f }. We will
refer toµ as thereference measure of the modeland toΘ as theparameter space.

In a general frameworkΘ can be any manifold modelled in a convenient space asR
n,

C
n, or any Banach or Hilbert space. So even though the followingresults can be written

with more generality, for the sake of simplicity we considerthe above-mentioned form
for the parameter spaceΘ. In that case, it is customary to use the same symbol (θ) to
denote points and coordinates.

Assume that the parametric statistical model is identifiable, i.e. there exists a one-to-
one map between parametersθ and probabilitiesPθ; assume also thatf satisfies the regu-
larity conditions to guarantee that the Fisher informationmatrix exists and is a strictly
positive definite matrix. In that caseΘ has a natural Riemannian manifold structure
induced by its information metric and the parametric statistical model is said to beregu-
lar. For further details, see Atkinson & Mitchel (1981), Burbea(1986), Burbea & Rao
(1982) and Rao (1945), among others.

As we are assuming that the model is identifiable, anestimatorU of the true proba-
bility measurebased on ak-size random sample,k ∈ N, may be defined as a measurable
map fromχk to the manifoldΘ, which induces a probability measure onΘ known as the
image measureand denoted asνk. Observe that we are viewingΘ as a manifold, not as
an open set ofRn.

To define the bias in an intrinsic way, we need the notion of mean or expected value
for a random object valued on the manifoldΘ. One way to achieve this purpose is
through an affine connection on the manifold. Note thatΘ is equipped with Levi–Civita
connection, corresponding to the Riemannian structure supplied by the information me-
tric.

Next we review the exponential map definition. Fixθ in Θ and letTθΘ be the tangent
space atθ. Givenξ ∈ TθΘ, consider a geodesic curveγξ : [0,1] → Θ, starting atθ and

satisfying dγξ
dt

∣

∣

∣

t=0
= ξ . Such a curve exists as far asξ belongs to an open star-shaped

neighbourhood of 0∈ TθΘ. In that case, the exponential map is defined as expθ(ξ) =
γξ(1). Hereafter, we restrict our attention to the Riemanniancase, denoting by‖ · ‖θ the
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norm atTθΘ and byρ the Riemannian distance. We define

Sθ = {ξ ∈ TθΘ : ‖ξ‖θ = 1} ⊂ TθΘ

and for eachξ ∈ Sθ we define

cθ(ξ) = sup{t > 0 : ρ (θ, γξ(t)) = t} .

If we set

Dθ = {tξ ∈ TθΘ : 0 ≤ t < cθ(ξ) ; ξ ∈ Sθ} and Dθ = expθ(Dθ) ,

it is well known that expθ mapsDθ diffeomorphically ontoDθ. Moreover, if the manifold
is complete the boundary ofDθ is mapped by the exponential map onto the boundary of
Dθ, called thecut locus ofθ in Θ. For further details see Chavel (1993).
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Figure 1: The exponential map

For the sake of simplicity, we shall assume thatνk(Θ \Dθ) = 0, whatever true proba-
bility measure in the statistical model is considered. In this case, the inverse of the expo-
nential map, exp−1

θ
, is definedνk–almost everywhere. For additional details see Chavel

(1993), Hicks (1965) or Spivak (1979).
For a fixed sample sizek, we define theestimator vector field Aas

Aθ(x) = exp−1
θ (U(x)) , θ ∈ Θ .

which is aC∞ random vector field (first order contravariant tensor field) induced on the
manifold through the inverse of the exponential map.

For a pointθ ∈ Θ we denote byEθ the expectation computed with respect to the
probability distribution corresponding toθ. We say thatθ is amean valueof U if and
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Figure 2: Estimator vector field

only if Eθ (Aθ) = 0. It must be pointed out that if aRiemannian centre of massexists, it
satisfies the above condition (see Karcher (1977) and Oller &Corcuera (1995)).

We say that an estimatorU is intrinsically unbiasedif and only if its mean value is
the true parameter. A tensorial measure of the bias is thebias vector field B, defined as

Bθ = Eθ (Aθ) , θ ∈ Θ .

An invariant bias measureis given by the scalar field‖B‖2 defined as

‖Bθ‖2θ , θ ∈ Θ .

Notice that if‖B‖2 = 0, the estimator is intrinsically unbiased.
The estimator vector fieldA also induces an intrinsic measure analogous to the mean

square error. TheRiemannian risk ofU, is the scalar field defined as

Eθ
(

‖Aθ‖2θ
)

= Eθ
(

ρ2(U, θ)
)

, θ ∈ Θ .

since‖A(x)‖2
θ
= ρ2(U(x), θ). Notice that in the Euclidean setting the Riemannian risk

coincides with the mean square error using an appropriate coordinate system.
Finally note that if a mean value exists and is unique, it is natural to regard the ex-

pected value of the square of the Riemannian distance, also known as theRao distance,
between the estimated points and their mean value as an intrinsic version of the variance
of the estimator.

To finish this section, it is convenient to note the importance of the selection of a
loss function in a statistical problem. Let us consider the estimation of the probability of
successθ ∈ (0,1) in a binary experiment where we perform independent trials until the
first success. The corresponding density of the number of is given by
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f (k; θ) = (1− θ)k θ ; k = 0,1, . . .

If we restrict our attention to the class of unbiased estimators, a (classical) unbiased
estimatorU of θ, must satisfy

∞
∑

k=0

U(k) (1− θ)k θ = θ, ∀θ ∈ (0,1),

where it follows that
∑∞

k=0 U(k) (1 − θ)k is constant for allθ ∈ (0,1). SoU(0) = 1 and
U(k) = 0 for k ≥ 1. In other words: when the first trial is a success,U assignsθ equal to
1; otherwiseθ is taken to be 0.

Observe that, strictly speaking, there is no (classical) unbiased estimator forθ since
U takes values in the boundary of the parameter space (0,1). But we can still use the
estimatorU in a wider setting, extending both the sample space and the parameter space.
We can then compareU with the maximum likelihood estimator,V(k) = 1/(k + 1) for
k ≥ 0, in terms of the mean square error. After some straightforward calculations, we
obtain

Eθ
(

(U − θ)2)
)

= θ − θ2

Eθ
(

(V − θ)2)
)

= θ2 +
(

θ Li2(1− θ) + 2θ2 ln(θ)
)

/(1− θ)

whereLi2 is the dilogarithm function. Further details on this function can be found in
Abramovitz (1970), page 1004. The next figure represents both mean square error ofU
andV.
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Figure 4: MSE of U (dashed line) and V (solid line).

It follows that there exist points in the parameter space forwhich the estimatorU
is preferable toV sinceU scores less risk; precisely forθ ∈ (0,0.1606) where the up-
per extreme has been evaluated numerically. This admissibility contradicts the common
sense that refusesU: this estimator assignsθ to be 0 even when the success occurs in a
finite number of trials. This points out the fact that the MSE criterion is not enough to
distinguish properly between estimators.

Instead of using the MSE we may compute the Riemannian risk for U andV. In the
geometric model, the Rao distanceρ is given by

ρ(θ1, θ2) = 2
∣

∣

∣

∣
arg tanh

( √

1− θ1
)

− arg tanh
( √

1− θ2
)

∣

∣

∣

∣
, θ1, θ2 ∈ (0,1)

which tends to+∞ when θ1 or θ2 tend to 0. SoEθ
(

ρ2(U, θ))
)

= +∞ meanwhile

Eθ
(

ρ2(V, θ))
)

< +∞. The comparison in terms of Riemannian risk discards the estimator
U in favour of the maximum likelihood estimatorV, as is reasonable to expect.

Furthermore we can observe that the estimatorU, which is classically unbiased, has
infinite norm of the bias vector. SoU is not even intrinsically unbiased, in contrast toV
which has finite bias vector norm.

3 Intrinsic version of classical results

In this section we outline a relationship between the unbiasedness and the Riemannian
risk obtaining an intrinsic version of the Cramér–Rao lower bound. These results are
obtained through the comparison theorems of Riemannian geometry, see Chavel (1993)
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and Oller & Corcuera (1995). Other authors have also worked in this direction, such
as Hendricks (1991), where random objects on an arbitrary manifold are considered,
obtaining a version for the Craḿer–Rao inequality in the case of unbiased estimators.
Recent developments on this subject can be found in Smith (2005).

Hereafter we consider the framework described in the previous section. LetU be
an estimator corresponding to the regular model{(χ,a, µ) ; Θ ; f }, where the parameter
spaceΘ is an–dimensional real manifold and assume that for allθ ∈ Θ, νk(Θ \ Dθ) = 0.

Theorem 3.1. [Intrinsic Cramér–Rao lower bound] Let us assume that E
(

ρ2(U, θ)
)

exists and the covariant derivative of E(A) exists and can be obtained by differentiating
under the integral sign. Then,

1. We have

E
(

ρ2(U, θ)
)

≥

(

div(B) − E
(

div(A)
)

)2

kn
+ ‖B‖2 ,

wherediv(·) stands for the divergence operator.
2. If all the sectional Riemannian curvatures K are bounded from above by a non-

positive constantK anddiv(B) ≥ −n, then

E
(

ρ2(U, θ)
)

≥

(

div(B) + 1+ (n− 1)
√
−K ‖B‖ coth

(√
−K ‖B‖

))2

kn
+ ‖B‖2 .

3. If all sectional Riemannian curvatures K are bounded fromabove by a positive
constantK and d(Θ) < π/2

√
K , where d(Θ) is the diameter of the manifold, and

div(B) ≥ −1, then

E
(

ρ2(U, θ)
)

≥

(

div(B) + 1+ (n− 1)
√
K d(Θ) cot

(√
K d(Θ)

))2

kn
+ ‖B‖2 .

In particular, for intrinsically unbiased estimators, we have:

4. If all sectional Riemannian curvatures are non-positive, then

E
(

ρ2(U, θ)
)

≥ n
k

5. If all sectional curvatures are less or equal than a positive constantK and d(Θ) <
π/2
√
K , then

E
(

ρ2(U, θ)
)

≥ 1
kn

The last result shows up the effect of the Riemannian sectional curvature on the
precision which can be attained by an estimator.

Observe also that any one–dimensional manifold corresponding to one–parameter
family of probability distributions is always Euclidean and div(B) = −1; thus part 2 of
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Theorem (3.1) applies. There are also some well known families of probability distri-
butions which satisfy the assumptions of this last theorem,such as the multinomial, see
Atkinson & Mitchel (1981), the negative multinomial distribution, see Oller & Cuadras
(1985), or the extreme value distributions, see Oller (1987), among many others.

It is easy to check that in then-variate normal case with known covariance matrixΣ,
where the Rao distance is the Mahalanobis distance, the sample mean based on a sample
of sizek is an estimator that attains the intrinsic Cramér–Rao lower bound, since

E
(

ρ2(X, µ)
)

= E
(

(X − µ)TΣ−1(X − µ)
)

=

= E
(

tr(Σ−1(X − µ)(X − µ)T)
)

=

= tr
(

Σ−1E
(

(X − µ)(X − µ)T
))

= tr(
1
k

I ) =
n
k

wherevT is the transpose of a vectorv.
Next we consider a tensorial version of the Cramér-Rao inequality. First we define

thedispersion tensorcorresponding to an estimatorU as:

Sθ = Eθ(Aθ ⊗ Aθ) ∀θ ∈ Θ

Theorem 3.2. The dispersion tensor S satisfies

S ≥ 1
k

Tr 2,4[G 2,2[(∇B− E(∇A)) ⊗ (∇B− E(∇A))]] + B⊗ B

whereTr i, j and G i, j are, respectively, the contraction and raising operators on index
i, j and ∇ is the covariant derivative. Here the inequality denotes that the difference
between the right and the left hand side is non-negative definite.

Now we study how we can decrease the mean square Rao distance of a given es-
timator. Classically this is achieved by taking the conditional mean value with respect
to a sufficient statistic; we shall follow a similar procedure here. But now our random
objects are valued on a manifold: we need to define the conditional mean value concept
in this case and then obtain an intrinsic version of the Rao–Blackwell theorem.

Let (χ,a,P) be a probability space. LetM be an–dimensional, complete and con-
nected Riemannian manifold. ThenM is a complete separable metric space (a Polish
space) and we will have a regular version of the conditional probability of anyM–valued
random objectf with respect to anyσ-algebraD ⊂ a onχ. In the case where the mean
square of the Riemannian distanceρ of f exists, we can define

E(ρ2( f ,m)|D)(x) =
∫

M
ρ2(t,m)Pf |D(x,dt) ,

wherex ∈ χ, B is a Borelian set inM andPf |D(x, B) is a regular conditional probability
of f givenD.
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If for each x ∈ χ there exists a unique mean valuep ∈ M corresponding to the
conditional probabilityPf |D(x, B), i.e. a pointp ∈ M such that

∫

M
exp−1

p (t)Pf |D(x,dt) = 0p,

we have a map fromχ to M that assigns, to eachx, the mean value corresponding to
Pf |D(x, B).

Therefore, iff is a random object onM andD ⊂ a aσ–algebra onχ, we can define
the conditional mean value off with respectD, denoted byM ( f |D), as aD-measurable
map,Z, such that

E(exp−1
Z ( f (·))|D) = 0Z

provided it exists. A sufficient condition to assure that the mean value exists and is
uniquely defined, is the existence of an open geodesically convex subsetN ⊂ M such
thatP{ f ∈ N} = 1. Finally, it is necessary to mention thatM (M ( f |D)) , M ( f ), see for
instance Kendall (1990).

Let us apply these notions to statistical point estimation.Given the regular para-
metric statistical model{(χ,a, µ) ; Θ ; f }, we assume thatΘ is complete or that there
exist a metric space isometry with a subset of a complete and connected Riemannian
manifold. We recall now that a real valued functionh on a manifold, equipped with an
affine connection, is said to beconvexif for any geodesicγ, h◦γ is a convex function.
Then we have the following result.

Theorem 3.3. (Intrinsic Rao–Blackwell)LetD be a sufficientσ–algebra for the sta-
tistical model. Consider an estimatorU such thatM (U|D) is well defined.

If θ is such thatρ2(θ, ·) is convex then

Eθ
(

ρ2(M (U|D), θ)
)

≤ Eθ(ρ
2(U, θ)) .

The proof is based on Kendall (1990). Sufficient conditions for the hypothesis of the
previous theorem are given in the following result

Theorem 3.4. If the sectional curvatures of N are at most 0, orK > 0 with d(N) <
π/2
√
K , where d(N) is the diameter of N, thenρ2(θ, ·) is convex∀θ ∈ Θ.

It is not necessarily true that the mean of the square of the Riemannian distance be-
tween the true and estimated densities decreases when conditioning onD. For instance,
if some of the curvatures are positive and we do not have further information about the
diameter of the manifold, we cannot be sure about the convexity of the square of the
Riemannian distance.

On the other hand, the efficiency of the estimators can be improved by conditioning
with respect to a sufficientσ-algebraD obtainingM (U|D). But in general the bias is
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not preserved, in contrast to the classical Rao-Blackwell theorem; in other words, even if
U were intrinsically unbiased,M (U|D) would not be in general intrinsically unbiased
since,

M (M (U|D)) , M (U).

However the norm of the bias tensor ofM (U|D) is bounded: if we letBM (U|D) be
the bias tensor, by the Jensen inequality,

‖BM (U|D)
θ

‖2θ ≤ Eθ
(

ρ2(M (U|D), θ)
)

≤ Eθ(ρ
2(U, θ)) .

4 Examples

This section is devoted to examine the goodness of some estimators for several models.
Different principles apply in order to select a convenient estimator; here we consider
the estimator that minimizes the Riemannian risk for a priordistribution proportional to
the Riemannian volume. This approach is related to the ideasdeveloped by Bernardo
& Juárez (2003), where the authors consider as a loss function a symmetrized version
of the Kullback-Leibler divergence instead of the square ofthe Rao distance and use
a reference prior which, in some cases, coincides with the Riemannian volume. Once
that estimator is obtained, we examine its intrinsic performance: we compute the corre-
sponding Riemannian risk and its bias vector, precisely thesquare norm of the intrinsic
bias. We also compare this estimator with the maximum likelihood estimator.

4.1 Bernoulli

Let X1, . . . ,Xk be a random sample of sizek from a Bernoulli distribution with parameter
θ, that is with probability densityf (x ; θ) = θx(1− θ)1−x, for x ∈ {0,1}. In that case, the
parameter space isΘ = (0,1) and the metric tensor is given by

g(θ) =
1

θ(1− θ)
We assume the prior distributionπ for θ be the Jeffreys prior, that is

π(θ) ∝ 1
√
θ(1− θ)

The corresponding joint density ofθ and (X1, . . . ,Xk) is then proportional to

1
√
θ(1− θ)

θ
∑k

i=1 Xi (1− θ)k−∑k
i=1 Xi = θ

∑k
i=1 Xi− 1

2 (1− θ)k−∑k
i=1 Xi− 1

2

which depends on the sample through the sufficient statisticT =
∑k

i=1 Xi . When
(X1, . . . ,Xk) = (x1, . . . , xk) putT = t. since,
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∫ 1

0
θ t− 1

2 (1− θ) k−t− 1
2 dθ = Beta

(

t +
1
2
, k− t +

1
2

)

the posterior distributionπ(· | t) based on the Jeffreys prior is as follows

π(θ | t) = 1

Beta
(

t + 1
2, k− t + 1

2

) θt−
1
2 (1− θ)k−t− 1

2

where Beta is the Euler beta function.
The Bayes estimator related to the loss function given by thesquare of the Rao

distanceρ2 is

θb(s) = arg min
θe∈(0,1)

∫ 1

0
ρ2(θe, θ) π(θ | t) dθ

Since an intrinsic estimation procedure is invariant underreparametrization, we per-
form the change of coordinates defined through the equation

1 =

(

dθ
dξ

)2 1
ξ(1− ξ)

in order to obtain a metric tensor equal to 1: the Riemannian distance expressed via
this coordinate system, known asCartesian coordinate system, will coincide with the
Euclidean distance between the new coordinates. If we solvethis differential equa-
tion, with the initial conditions equal toξ(0) = 0, we obtainξ = 2 arcsin(

√
θ) and

ξ = −2 arcsin(
√
θ); we only consider the first of these two solutions. After some straight-

forward computations we obtain

ρ (θ1, θ2) = 2 arccos
( √

θ1 θ1 +
√

(1− θ1) (1− θ2)
)

= |ξ1 − ξ2| (1)

for ξ1 = 2 arcsin(
√
θ1) andξ2 = 2 arcsin(

√
θ2) andθ1, θ2 ∈ Θ.

In the Cartesian setting, the Bayes estimatorξb(s) is equal to the expected value ofξ
with respect to the posterior distribution

π(ξ | t) = 1

Beta
(

t + 1
2, k− t + 1

2

)

(

sin2
(

ξ

2

))t (

1− sin2
(

ξ

2

))k−t

Once we apply the change of coordinatesθ = sin2
(

ξ

2

)

, the estimatorξb(s) is

ξb(t) =
1

Beta
(

t + 1
2, k− t + 1

2

)

∫ 1

0
2 arcsin

(√
θ
)

θ t− 1
2 (1− θ) k−t− 1

2 dθ

Expanding arcsin(
√
θ ) in power series ofθ,



Gloria Garcı́a and Josep M. Oller 137

arcsin(
√
θ ) =

1
√
π

∞
∑

j=0

Γ
(

j + 1
2

)

j! (2 j + 1)
θ j+ 1

2

whereΓ is the Euler gamma function. After some computations, we obtain

ξb(t) = 2
Γ (k+ 1) Γ (t + 1)

Γ
(

k+ 3
2

)

Γ
(

t + 1
2

) 3F2(
1
2
,
1
2
, t + 1;k+

3
2
,
3
2

; 1) (2)

where3F2 denotes a generalized hypergeometric function. Further details on the gamma,
beta and hypergeometric functions can be found on Erdélyi et al. (1955). Finally the
Bayes estimatorθb(t) of θ is given by

θb(t) = sin2

















Γ (k+ 1) Γ (t + 1)

Γ
(

k+ 3
2

)

Γ
(

t + 1
2

) 3F2(
1
2
,
1
2
, t + 1;k+

3
2
,
3
2

; 1)

















It is straightforward to prove that

θb(k− t) = 1− θb(t)

and can be approximated by

θa(t) =
t
k
+

(

1
2
− t

k

) (

0.63
k
− 0.23

k2

)

with relative errors less that 3.5% for any result based on sample sizek ≤ 100.
The behaviour of these estimators, for different values ofk and for smallt, is shown

in the following table.

θb(0) θb(1) θb(2) θa(0) θa(1) θa(2)

k = 1 0.20276 0.79724 - 0.20000 0.80000 -
k = 2 0.12475 0.50000 0.87525 0.12875 0.50000 0.87125
k = 5 0.05750 0.23055 0.40995 0.05840 0.23504 0.41168
k = 10 0.03023 0.12109 0.21532 0.03035 0.12428 0.21821
k = 20 0.01551 0.06207 0.11037 0.01546 0.06392 0.11237
k = 30 0.01043 0.04173 0.07420 0.01037 0.04301 0.07566
k = 50 0.00630 0.02521 0.04482 0.00625 0.02600 0.04575
k = 100 0.00317 0.01267 0.02252 0.00314 0.01308 0.02301

Observe that these estimators do not estimateθ as zero whent = 0, similarly to the
estimator obtained by Bernardo & Juárez (2003), which is particularly useful when we
are dealing with rare events and small sample sizes.

The Riemannian risk of this intrinsic estimator has been evaluated numerically and
is represented in Figure . Note that the results are given in terms of the Cartesian coor-
dinatesξb, in order to guarantee that the physical distance in the plots is proportional to
the Rao distance. The Riemannian risk ofθb is given by
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Eθ
(

ρ2(θb, θ)
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which can be numerically computed through expression (2). This can be compared with
the numerical evaluation of the Riemannian risk of the maximum likelihood estimator
θ∗ = t/k, given by

Eθ
(

ρ2(θ∗, θ)
)

= Eξ
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as we can see in Figure 5.
We point out that the computation of the Riemannian risk for the maximum likelihood
estimator requires the extension by continuity of the Rao distance given in (1) to the
closure of the parameter spaceΘ asθ∗ takes values on [0,1].
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Figure 5: Riemannian risk ofξb, for k = 1 (solid line), k= 2 (long dashed line), k= 10 (short dashed line)
and k= 30 (dotted line).

For a fixed sample size, observe that the Riemannian risk corresponding toξb is lower
than the Riemannian risk corresponding toξ∗ in a considerable portion of the parameter
space, as it is clearly shown in Figure .
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Figure 6: Riemannian risk ofξ∗, for k = 1 (solid line), k= 2 (long dashed line), k= 10 (short dashed line)
and k= 30 (dotted line).
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Figure 7: Riemannian risk corresponding toθ∗, for k = 1 (solid line), k = 2 (long dashed line) and
corresponding toθb, for k = 1 (short dashed line) and k= 2 (dotted line).

Note that part of the Riemannian risk comes up through the bias of an estimator. Next
the square of the norm of the bias vectorBb for θb andB∗ for θ∗ is evaluated numerically.
Formally, in the Cartesian coordinate systemξ
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The squared norm of the bias vectorBb and ofB∗ are represented in Figures and
respectively.
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Figure 8: ‖Bb‖2 for k = 1 (solid line), k= 2 (long dashed line), k= 10 (short dashed line) and k= 30
(dotted line).

Now, when the sample size is fixed, the intrinsic bias corresponding toξb is greater than
the intrinsic bias corresponding toξ∗ in a wide range of values of the model parameter,
that is the opposite behaviour showed up by the Riemannian risk.

4.2 Normal with mean value known

Let X1, . . . ,Xk be a random sample of sizek from a normal distribution with known
mean valueµ0 and standard deviationσ. Now the parameter space isΘ = (0,+∞) and
the metric tensor for theN(µ0, σ) model is given by

g(σ) =
2
σ2
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Figure 9: ‖B∗‖2 k = 1, 2 (solid line) (the same curve), k= 10 (dashed line) and k= 30 (dotted line).

We shall assume again the Jeffreys prior distribution forσ. Thus the joint density for
σ and (X1, . . . ,Xk) is proportional to

1
σk+1

exp
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depending on the sample through the sufficient statisticS2 = 1
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∑k
i=1(Xi − µ0)2. When
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the corresponding posterior distributionπ(· | s2) based on the Jeffreys prior satisfies
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Denote byρ the Rao distance for theN(µ0, σ). As we did in the previous example,
instead of directly determining

σb(s) = arg min
σe∈(0+∞)

∫ +∞

0
ρ2(σe, σ) π(σ | s2) dσ

we perform a change of coordinates to obtain a Cartesian coordinate system. Then we
compute the Bayes estimator for the new parameter’s coordinateθ; as the estimator ob-
tained in this way is intrinsic, we finish the argument recoveringσ from θ. Formally, the


