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What does intrinsic mean in statistical estimation?*
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Abstract

In this paper we review different meanings of the word intrinsic in statistical estimation, focusing our
attention on the use of this word in the analysis of the properties of an estimator. We review the intrinsic
versions of the bias and the mean square error and results analogous to the Cramér-Rao inequality
and Rao-Blackwell theorem. Different results related to the Bernoulli and normal distributions are also
considered.
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1 Introduction

Statistical estimation is concerned with specifying, ineatain framework, a plausi-
ble probabilistic mechanism which explains observed dita. inherent nature of this
problem is inductive, although the process of estimatiselfiis derived through mathe-
matical deductive reasoning.

In parametric statistical estimation the probability iswsed to belong to a class
indexed by some parameter. Thus the inductive infereneesigurally in the form of
point or region estimates of the probabilistic mechanisnictvthas generated some
specific data. As these estimates are provided through tinea¢i®n of the parameter, a
label of the probability, dferent estimators may lead tdi@irent methods of induction.
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Under this approach an estimator should not depend on tlodispgparametrization
of the model: this property is known as thenctional invarianceof an estimator. At
this point, the notion of intrinsic estimation is raised tbe first time: an estimator
is intrinsic if it satisfies this functional invariance property, and fvistway is a real
probability measure estimator. On the other hand, the bidstlze mean square error
(MSE) are the most commonly accepted measures of the pexfmenof an estimator.
Nevertheless these concepts are clearly dependent on ttiel parametrization and
thus unbiasedness and uniformly minimum variance estimatienon-intrinsic

It is also convenient to examine the goodness of an estintfatoughintrinsic con-
ceptual tools: this is the object of thetrinsic analysis of statistical estimatidantro-
duced by Oller & Corcuera (1995) (see also Oller (1993b) ahdr@1993a)). These
papers consider an intrinsic measure for the bias and thareguiror taking into ac-
count that a parametric statistical model with suitableif@gty conditions has a natural
Riemannian structure given by the information metric. lis $etting, the square error
loss is replaced by the square of the corresponding Rieraamtigtance, known as the
information distancer theRao distanceand the bias is redefined through a convenient
vector field based on the geometrical properties of the métdalist be pointed out that
there exist other possible intrinsic losses but the squiteecRao distance is the most
natural intrinsic version of the square error.

In a recent paper of Bernardo & @z (2003), the author introduces the concept
of intrinsic estimation by considering the estimator whisimimizes the Bayesian risk,
taking as a loss function a symmetrized version of Kullbkeltler divergence (Bernardo
& Rueda (2002)) and considering a reference prior based danfanmation-theoretic
approach (Bernardo (1979) and Berger & Bernardo (1992)xkis independent of
the model parametrization and in some cases coincides matldireys uniform prior
distribution. In the latter case the prior, usually imprgpeproportional to the Rieman-
nian volume corresponding to the information metridifdys (1946)). This estimator
is intrinsic as it does not depend on the parametrizatiohehtodel.

Moreover, observe that both the loss function and the reéererior are derived just
from the model and this gives rise to another notion of isidnan estimation procedure
is said to bdantrinsic if it is formalized only in terms of the model. Observe thatlie
framework of information geometry, a concepingrinsic as far as it has a well-defined
geometrical meaning.

In the present paper we review the basic results of the abwmmioned intrinsic
analysis of the statistical estimation. We also examineséme concrete examples, the
intrinsic estimator obtained by minimizing the Bayesiakrusing as an intrinsic loss
the square of the Rao distance and as a reference prior fiineydeuniform prior. In
each case the corresponding estimator is compared withmhelstained by Bernardo
& Juarez (2003).
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2 The intrinsic analysis

As we pointed out before, the bias and mean square error aingtriesic concepts. The
aim of theintrinsic analysisof the statistical estimationis to provide intrinsic tools for
the analysis of intrinsic estimators, developing in thisyveatheory analogous to the
classical one, based on some natural geometrical strgabfitbe statistical models. In
particular, intrinsic versions of the Cr&m-Rao lower bound and the Rao—Blackwell
theorem have been established.

We first introduce some notation. Lét,@, 1) be a measure space a@de a con-
nected open set &&". Consider a magd : ¥ x ® — R such thatf(x,6) > 0 and
f(x, 0)u(dx) defines a probability measure on @) to be denoted aBy. In the present
paper aparametric statistical modat defined as the triplx, &, u); ©; f}. We will
refer tou as thereference measure of the modeld to® as theparameter space

In a general framewor® can be any manifold modelled in a convenient spad@as
C", or any Banach or Hilbert space. So even though the followésglts can be written
with more generality, for the sake of simplicity we consitieg above-mentioned form
for the parameter spad®. In that case, it is customary to use the same symf)aio(
denote points and coordinates.

Assume that the parametric statistical model is identiiaib. there exists a one-to-
one map between paramet@nd probabilitie$,; assume also thdtsatisfies the regu-
larity conditions to guarantee that the Fisher informatiaetrix exists and is a strictly
positive definite matrix. In that cage@ has a natural Riemannian manifold structure
induced by its information metric and the parametric stiagémodel is said to beegu-
lar. For further details, see Atkinson & Mitchel (1981), Burli¢Q86), Burbea & Rao
(1982) and Rao (1945), among others.

As we are assuming that the model is identifiablegstimatori/ of the true proba-
bility measurebased on &-size random sampl&,e N, may be defined as a measurable
map fromx* to the manifold®, which induces a probability measure ®@known as the
image measurand denoted ag,. Observe that we are viewir@ as a manifold, not as
an open set ak".

To define the bias in an intrinsic way, we need the notion ofmaexpected value
for a random object valued on the manifald One way to achieve this purpose is
through an fiine connection on the manifold. Note tieais equipped with Levi—Civita
connection, corresponding to the Riemannian structurpl®goby the information me-
tric.

Next we review the exponential map definition. Bii @ and letT¢® be the tangent
space ab. Given¢ € T40, consider a geodesic curye : [0,1] — O, starting ab and
satisfyingddlﬂt:0 = £. Such a curve exists as far &delongs to an open star-shaped
neighbourhood of G Ty®. In that case, the exponential map is defined as(&xp=
v¢(1). Hereafter, we restrict our attention to the Riemaniase, denoting by- ||, the
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norm atT,® and byp the Riemannian distance. We define
Sop=1{£ € Tp® 1 [i€llg = 1} c T4O
and for eacl¥ € &y we define
Co(€) = sudt > 0 : p (0, y£(1)) = t}.
If we set
Dy ={tEeTy®:0<t<cyé); £€Sy) and Dy =exp(Dy),

it is well known that exp mapsd, diffeomorphically ontd®,. Moreover, if the manifold
is complete the boundary af; is mapped by the exponential map onto the boundary of
Dy, called thecut locus ob in @. For further details see Chavel (1993).

T,© Tangent space

ex%(-)

3 0 %0
0 ) n)
------ ﬁfgf;&? Manifold
o) v,(1)
1€ 1l= v, length | &1l =7 length
I711= 7, length radial distances are preserved

Figure 1: The exponential map

For the sake of simplicity, we shall assume thd® \ Dy) = 0, whatever true proba-
bility measure in the statistical model is considered. Ia tlase, the inverse of the expo-
nential map, expl, is definedv—almost everywhere. For additional details see Chavel
(1993), Hicks (1965) or Spivak (1979).

For a fixed sample side we define thestimator vector field As

As(x) = exg(U(X), 6€0O.

which is aC* random vector field (first order contravariant tensor fiefdjuiced on the
manifold through the inverse of the exponential map.

For a pointd € ® we denote byE, the expectation computed with respect to the
probability distribution corresponding t We say that is amean valueof U if and
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T,0

A9= exp; Ux)

geodesic i U(x)

S

Figure 2: Estimator vector field

only if Eg (Ag) = 0. It must be pointed out that ifRiemannian centre of massists, it
satisfies the above condition (see Karcher (1977) and OllEo&uera (1995)).

We say that an estimatdy is intrinsically unbiasedf and only if its mean value is
the true parameter. A tensorial measure of the bias ibitigevector field Bdefined as

By=Eo(A), 0€O.
An invariant bias measuris given by the scalar fielgB||* defined as
IBoll;, 6€O.

Notice that if||B||*> = 0, the estimator is intrinsically unbiased.
The estimator vector field also induces an intrinsic measure analogous to the mean
square error. ThRiemannian risk of{, is the scalar field defined as

Eq (IAll?) = Eq (0*(U.6)) . 6€O.

sincellA(x)||§ = p?(U(X),6). Notice that in the Euclidean setting the Riemannian risk
coincides with the mean square error using an appropriataiate system.

Finally note that if a mean value exists and is unique, it &ira to regard the ex-
pected value of the square of the Riemannian distance, atserkas thdrao distance
between the estimated points and their mean value as amsictviersion of the variance
of the estimator.

To finish this section, it is convenient to note the importan€ the selection of a
loss function in a statistical problem. Let us consider stégation of the probability of
succesd¥ € (0, 1) in a binary experiment where we perform independentstadatil the
first success. The corresponding density of the number aféndpy
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Figure 3: Bias vector field

fk;0)=(1-60 0; k=0,1,...

If we restrict our attention to the class of unbiased estimsata (classical) unbiased
estimatorJ of 6, must satisfy

dYum@-eake=6, voe (1)

k=0
where it follows thaty;> , U(K) (1 — 6)* is constant for alb € (0,1). SoU(0) = 1 and
U(k) = 0 fork > 1. In other words: when the first trial is a succddsassigng equal to
1; otherwise is taken to be 0.

Observe that, strictly speaking, there is no (classicdbjased estimator fof since

U takes values in the boundary of the parameter spade.(But we can still use the
estimatoiJ in a wider setting, extending both the sample space and thengder space.
We can then comparg with the maximum likelihood estimatoY,(k) = 1/(k + 1) for
k > 0, in terms of the mean square error. After some straighdagvealculations, we
obtain

Eqo ((U - 6)?)) 06— 62

Eo((V-0)%) = 62+ (0Lio(1-6)+26%In(6)) /(1-6)

wherelLli, is the dilogarithm function. Further details on this functican be found in
Abramovitz (1970), page 1004. The next figure represents ineian square error of
andV.
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Figure 4: MSE of U (dashed line) and V (solid line).

It follows that there exist points in the parameter spacenfoich the estimatol
is preferable tov sinceU scores less risk; precisely fére (0,0.1606) where the up-
per extreme has been evaluated numerically. This admligsitntradicts the common
sense that refuses: this estimator assigrsto be 0 even when the success occurs in a
finite number of trials. This points out the fact that the MSHecion is not enough to
distinguish properly between estimators.

Instead of using the MSE we may compute the Riemannian risk fandV. In the
geometric model, the Rao distaneés given by

0(601,6,) = 2 |arg tank(/1- 6, ) - argtant{ v/1- 6 )’ , 01, 6, € (0,1)

which tends to+co when ¢y or 6; tend to 0. SoE, (p?(U,6))) = +co meanwhile

Ey (pZ(V, 9))) < +o0. The comparison in terms of Riemannian risk discards thimagir

U in favour of the maximum likelihood estimatbf, as is reasonable to expect.
Furthermore we can observe that the estimbtowhich is classically unbiased, has

infinite norm of the bias vector. 99 is not even intrinsically unbiased, in contrasito

which has finite bias vector norm.

3 Intrinsic version of classical results
In this section we outline a relationship between the udsiaess and the Riemannian

risk obtaining an intrinsic version of the Crém-Rao lower bound. These results are
obtained through the comparison theorems of Riemanniamgey, see Chavel (1993)
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and Oller & Corcuera (1995). Other authors have also worketthis direction, such
as Hendricks (1991), where random objects on an arbitramifold are considered,
obtaining a version for the Craégn-Rao inequality in the case of unbiased estimators.
Recent developments on this subject can be found in Smiths{20

Hereafter we consider the framework described in the pusveection. Letld be
an estimator corresponding to the regular md¢ela, 1) ; © ; f}, where the parameter
spaced is an—dimensional real manifold and assume that for&l®, v«(® \ Dy) = 0.

Theorem 3.1. [Intrinsic Cramér—Rao lower bound] Let us assume tha(I;oHﬂ, 9))
exists and the covariant derivative of & exists and can be obtained byfdrentiating
under the integral sign. Then,

1. We have X
(div(B) - E(div(A)))
kn
wherediv(-) stands for the divergence operator.

2. If all the sectional Riemannian curvatures K are boundedhfabove by a non-
positive constan¥ anddiv(B) > —n, then

E(oX(U.6)) > +1IBI?,

(div(B) + 1+ (n— 1) V=K [IB] coth( V=K [IB))"
kn

3. If all sectional Riemannian curvatures K are bounded fralpove by a positive
constantX and d®©) < /2 VK, where d0) is the diameter of the manifold, and
div(B) > -1, then

E(pX(U.6)) > +1IBI.

(div(B) +1+(n-1)VK d(©) Cot( VK d(®)))2
kn

E (p%(U.6)) 2 +1IB*.
In particular, for intrinsically unbiased estimators, wave:
4. If all sectional Riemannian curvatures are non-positithen

n
E (p? >
(PP(u.0) =

5. If all sectional curvatures are less or equal than a pesittonstan and d®) <
/2 VK, then .
2 —
E (o%(U.0)) 2 o

The last result shows up thdfect of the Riemannian sectional curvature on the
precision which can be attained by an estimator.

Observe also that any one—dimensional manifold correspgrtd one—parameter
family of probability distributions is always Euclideandadiv(B) = —1; thus part 2 of
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Theorem (3.1) applies. There are also some well known famiif probability distri-
butions which satisfy the assumptions of this last theomarmh as the multinomial, see
Atkinson & Mitchel (1981), the negative multinomial diddution, see Oller & Cuadras
(1985), or the extreme value distributions, see Oller (}98Tong many others.

It is easy to check that in thevariate normal case with known covariance malix
where the Rao distance is the Mahalanobis distance, thdsamgan based on a sample
of sizek is an estimator that attains the intrinsic C&rRao lower bound, since

E (0°(X. 1))

E(X-u)'= ' (X-p) =
E(rE (X - w)(X - w)")) =

tr(ZE(X - m)(X-p)7)) = tr(% e E

whereV' is the transpose of a vectar
Next we consider a tensorial version of the CéarRao inequality. First we define
thedispersion tensocorresponding to an estimat®f as:

Sy = Eg(Ag@Ag) Yoe®

Theorem 3.2. The dispersion tensor S satisfies
1
Sz T 24G2?(VB - E(VA)) ® (VB- E(VA))]] + B® B

whereTr") and G*I are, respectively, the contraction and raising operatonsiadex
i, j and V is the covariant derivative. Here the inequality denotest tthe dfference
between the right and the left hand side is non-negativeitkefin

Now we study how we can decrease the mean square Rao distaaggven es-
timator. Classically this is achieved by taking the comdhitil mean value with respect
to a suficient statistic; we shall follow a similar procedure heret Bow our random
objects are valued on a manifold: we need to define the conditinean value concept
in this case and then obtain an intrinsic version of the RéackBvell theorem.

Let (¥, @, P) be a probability space. L&l be an—dimensional, complete and con-
nected Riemannian manifold. Thén is a complete separable metric space (a Polish
space) and we will have a regular version of the conditiorabability of anyM—valued
random object with respect to any—-algebra® c aonyx. In the case where the mean
square of the Riemannian distancef f exists, we can define

EQ2(f, MID)(X) = fM PP MPrp(x dY).

wherex € ¥, Bis a Borelian setitM andPs (X, B) is a regular conditional probability
of f givenD.



134 What does intrinsic mean in statistical estimation?

If for each x € X there exists a unique mean valpee M corresponding to the
conditional probabilityPsp(x, B), i.e. a pointp € M such that

fM exp, ()P (X, dt) = Op,

we have a map frony to M that assigns, to each the mean value corresponding to
Pf|D(X, B).

Therefore, iff is a random object oM and® c @ aoc—algebra ory, we can define
the conditional mean value dfwith respectD, denoted byl (f|D), as aD-measurable
map,Z, such that

E(exg; (f()ID) = 0z

provided it exists. A sfiicient condition to assure that the mean value exists and is
uniquely defined, is the existence of an open geodesicatlyecosubseN ¢ M such
thatP{f € N} = 1. Finally, it is necessary to mention tHat(IM (f|D)) = M (), see for
instance Kendall (1990).

Let us apply these notions to statistical point estimati®iven the regular para-
metric statistical model(x, a,u) ; ©; f}, we assume thad is complete or that there
exist a metric space isometry with a subset of a complete andected Riemannian
manifold. We recall now that a real valued functioion a manifold, equipped with an
affine connection, is said to lw®nvexif for any geodesicy, hoy is a convex function.
Then we have the following result.

Theorem 3.3. (Intrinsic Rao—Blackwell)Let D be a syiciento—algebra for the sta-
tistical model. Consider an estimat®f such thatht (U/|D) is well defined.
If 6 is such thap?(6, -) is convex then

Ey (0*(M (UID). 6)) < Eg(p*(U.6)) -

The proof is based on Kendall (1990).fBcient conditions for the hypothesis of the
previous theorem are given in the following result

Theorem 3.4. If the sectional curvatures of N are at most 0,%r > 0 with d(N) <
n/2 VK, where dN) is the diameter of N, thes?(6, -) is convex?d € ©.

It is not necessarily true that the mean of the square of teeRnnian distance be-
tween the true and estimated densities decreases wherionimj on®D. For instance,
if some of the curvatures are positive and we do not haveduirtiformation about the
diameter of the manifold, we cannot be sure about the cotywexkithe square of the
Riemannian distance.

On the other hand, theficiency of the estimators can be improved by conditioning
with respect to a diiciento-algebra® obtainingdt (U|D). But in general the bias is
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not preserved, in contrast to the classical Rao-BlackWwethtem; in other words, even if
U were intrinsically unbiased)t (U|D) would not be in general intrinsically unbiased
since,

N (M (UD)) #+ M (U).

However the norm of the bias tensor¥%f(2|D) is bounded: if we leB™ (D) pe
the bias tensor, by the Jensen inequality,

IB) HON2 < E, (02 (UID). 6)) < Eg(oA(U.6)).

4 Examples

This section is devoted to examine the goodness of someagstisrfor several models.
Different principles apply in order to select a convenient extim here we consider
the estimator that minimizes the Riemannian risk for a pistribution proportional to
the Riemannian volume. This approach is related to the ideasloped by Bernardo
& Juarez (2003), where the authors consider as a loss functigmmetrized version
of the Kullback-Leibler divergence instead of the squar¢hef Rao distance and use
a reference prior which, in some cases, coincides with tleenBnnian volume. Once
that estimator is obtained, we examine its intrinsic pen@nce: we compute the corre-
sponding Riemannian risk and its bias vector, preciselstuare norm of the intrinsic
bias. We also compare this estimator with the maximum ligeld estimator.

4.1 Bernoulli

Let Xy, ..., Xk be arandom sample of sikédrom a Bernoulli distribution with parameter
6, that is with probability density (x ; 6) = 6*(1 — 6)*%, for x € {0, 1}. In that case, the
parameter space & = (0, 1) and the metric tensor is given by

1
) =
9(6) oa-0)
We assume the prior distributianfor 6 be the Jéreys prior, that is
1
2] e —
"0 FT=s
The corresponding joint density 8fand (X4, ..., Xi) is then proportional to
1 k k k 1 k 1
= 9Zia X (1 — @) Tia X = gZin Xim3 (1 — g) L X3

which depends on the sample through thdfisient statisticT = z:‘ﬂ)q. When
(X, ..., X)) = (Xg,..., %) putT =t. since,
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1
t-171 oy k-t-1 _ 1— _ 1—
foe 2(1-6) 2d0_Beta(t+2,k t+2)

the posterior distribution(- | t) based on the Jkeys prior is as follows

1
Beta(t + 3, k—t+3)

7(@]t) = gz (1-g)ktz

where Beta is the Euler beta function.

The Bayes estimator related to the loss function given bystiieare of the Rao
distancep? is

1
) fo 0%(6°,0) n(0|t)do

Since an intrinsic estimation procedure is invariant umdparametrization, we per-
form the change of coordinates defined through the equation

SHES
S \dg) £1-¢)

in order to obtain a metric tensor equal to 1: the Riemanniatance expressed via
this coordinate system, known @artesian coordinate systemwill coincide with the
Euclidean distance between the new coordinates. If we dbigedifferential equa-
tion, with the initial conditions equal t¢(0) = 0, we obtainé = 2 arcsin(v6) and
& = -2 arcsin(Vh); we only consider the first of these two solutions. After estraight-
forward computations we obtain

6°(s) = arg min
( ) geeqo,l

p (61.62) = 2arcco§ o1 61 + \(1-01) (1-62) ) = |1 - & (1)

for £, = 2 arcsin(y6,) andé, = 2 arcsin(v/d,) andéy, 6, € O.
In the Cartesian setting, the Bayes estim&Pgs) is equal to the expected valuepf
with respect to the posterior distribution

ey = Beta(t + ; k—t+3) (Sinz(g))t (1_ S"‘Z(%))

Once we apply the change of coordinates sir? (%) the estimato£®(s) is

k-t

1 1 . ;
&) = f 2 arcsif Vo) 672 (1-0) %2 dg
Beta(t + 1, k—t+ 1) Jo Vo)

Expanding arcsin{/é ) in power series of,
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( 1) j+1
arcsin(ve ) = — \/_ Z '(21+1)9] 2

wherel is the Euler gamma function. After some computations, waiabt
F(k+i)1“(t+1) F(l lt+1k 3§;1) @

2’2 2’2
wheresF, denotes a generalized hypergeometric function. Furtharden the gamma,
beta and hypergeometric functions can be found orelgreet al. (1955). Finally the
Bayes estimataf®(t) of 6 is given by

éht) = sir| LK+ D T(t+1) fxll ke 3
T(k+2) r(t+3) 22
It is straightforward to prove that

6°(k—t) = 1 - 6°(t)

£t) =

and can be approximated by

Ha(t)—£+ }_E E’_%
Tk \2 kK k k2
with relative errors less that®% for any result based on sample dize 100.
The behaviour of these estimators, foffeient values ok and for smalk, is shown

in the following table.

| 6”0 | () | °@ | 0 | Q) | Q)
0.20276| 0.79724 - 0.20000| 0.80000 -
0.12475| 0.50000(| 0.87525| 0.12875| 0.50000| 0.87125
0.05750| 0.23055| 0.40995|| 0.05840| 0.23504| 0.41168
0.03023| 0.12109| 0.21532|| 0.03035| 0.12428| 0.21821
0.01551| 0.06207| 0.11037| 0.01546| 0.06392| 0.11237
0.01043| 0.04173| 0.07420|| 0.01037| 0.04301| 0.07566
0.00630| 0.02521| 0.04482|| 0.00625| 0.02600| 0.04575
0.00317| 0.01267| 0.02252| 0.00314| 0.01308| 0.02301

I
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I
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Observe that these estimators do not estimate zero whem = 0, similarly to the
estimator obtained by Bernardo &ahez (2003), which is particularly useful when we
are dealing with rare events and small sample sizes.

The Riemannian risk of this intrinsic estimator has beertuatad numerically and
is represented in Figure . Note that the results are givearing of the Cartesian coor-
dinatest®, in order to guarantee that the physical distance in thes pdgiroportional to
the Rao distance. The Riemannian riskdfs given by
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Ey (0%(6".6)) = B¢ ((¢" - %) = i(&b(t) -¢)? (t) S'nﬁ( ) ot (2)
t=0

which can be numerically computed through expression (&% dan be compared with
the numerical evaluation of the Riemannian risk of the maxiniikelihood estimator
g* = t/k, given by

Es(0%(0,60)) = E:((€ -2

2 aese{ £ -¢] (1) s (5) co22(9)

as we can see in Figure 5.

We point out that the computation of the Riemannian risk i@ taximum likelihood
estimator requires the extension by continuity of the Raatlice given in (1) to the
closure of the parameter spa@eas6* takes values on [@].

0.0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0.0 05 10 15 20 25 30

3

Figure 5: Riemannian risk of°, for k = 1 (solid line), k= 2 (long dashed line), k 10 (short dashed line)
and k= 30 (dotted line).

For a fixed sample size, observe that the Riemannian risksponding ta® is lower
than the Riemannian risk correspondingtan a considerable portion of the parameter
space, as itis clearly shown in Figure .
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Figure 6: Riemannian risk of*, for k = 1 (solid line), k= 2 (long dashed line), k 10 (short dashed line)
and k= 30 (dotted line).
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Figure 7: Riemannian risk corresponding #, for k = 1 (solid line), k = 2 (long dashed line) and
corresponding t@®, for k = 1 (short dashed line) and & 2 (dotted line).

Note that part of the Riemannian risk comes up through theddfian estimator. Next
the square of the norm of the bias vedBrfor 8° andB* for 6" is evaluated numerically.
Formally, in the Cartesian coordinate systém
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uy)
o
Il

- e gen-a ) e ()
t=0

¢ Ef(€7) - €= g(z arcsir( \/E) - g) (l:) sir? (é;) cok (52’)

The squared norm of the bias vec®t and of B* are represented in Figures and
respectively.

2
I

Figure 8: ||BY||? for k = 1 (solid line), k= 2 (long dashed line), k= 10 (short dashed line) and k 30
(dotted line).

Now, when the sample size is fixed, the intrinsic bias comadjng tos” is greater than
the intrinsic bias corresponding £ in a wide range of values of the model parameter,
that is the opposite behaviour showed up by the Riemanrs&n ri

4.2 Normal with mean value known
Let Xi,..., Xk be a random sample of sizefrom a normal distribution with known

mean valugi and standard deviatian. Now the parameter space@s= (0, +0) and
the metric tensor for thil(ue, o) model is given by

o) = =
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Figure 9: ||B*|I?> k = 1, 2 (solid line) (the same curve),% 10 (dashed line) and k 30 (dotted line).

We shall assume again thefdeys prior distribution for-. Thus the joint density for
o and (Xq, ..., Xy) is proportional to

1 1< )
Ty exp 552 le(xi — Ho)
i=

depending on the sample through thefisient statisticS? = & X, (X — o) When
(Xt ..., %) = (Xq, ..., %) putS? = &. As

© 1 k 2:71 (K
——¢&|do = r(=
fo okl eXp( 202 ) 7T ko) (2)
the corresponding posterior distributin( | s°) based on the Jkeys prior satisfies
(ksz) 1 k
o] $) = Zr(y) exp(‘ﬁsz)

Denote byp the Rao distance for thid(ug, o). As we did in the previous example,
instead of directly determining

NIx

aP(s) = [ h 2(c®,0) n(o | ) do
©=arg min [ s(50) n(r 1)

O’e€(0+oo)
we perform a change of coordinates to obtain a Cartesiardowie system. Then we
compute the Bayes estimator for the new parameter’s caatetinas the estimator ob-
tained in this way is intrinsic, we finish the argument recongeo from 6. Formally, the



